
Basic call to create new_table
from old_table

proc sql;
create table new_table as

 select * from old_table;
quit;

• No need for package

• Create new table with statement “create
table … as”

• SQL statement in one data step

install.packages(“sqldf”)
library(sqldf)

new_table <- sqldf(“select * from old_table”)

• Need to install and load package “sqldf”

• Create new table with assignment (“<-” or “=“)

• SQL statement in parenthesis and quotation mark

Integrating SQL queries:
from PROC SQL to SQLDF

PP17 - PHUSE EU Connect 2022

Julia Psenner
Statistician

mainanalytics GmbH
julia.psenner@mainanalytics.de

E­ ective data processing SQL queries
Include SQL queries in other languages:

SAS: PROC SQL
• Most common way to use SQL queries in clinical context

R: SQLDF
• Growing populari� due to shi� to open source programming

• Easy way for traditional SAS users to perform SQL queries in R

Database Management System (DBMS): when executing SQL
statement -> SQL database (DB) is created in backend

If PROC SQL and SQLDF connect to DB of same DBMS, there is
no di� erent behavior between the two languages.

This poster shows the similarities and di� erences when working
on the default DBMS:

• PROC SQL: internal database

• SQLDF: connects to SQLite database

Join two datasets

(inner) join full (outer) join

Although missing values are displayed di� erently,
“is not NULL” leads to the same outcome

Missing values

Select, where, order by
randomdf

Text operators

Note: SQLDF is not case sensitive!

Aggregate functions

Aggregate functions work the same way, but unlike in PROC SQL, the new variables do not need
to be renamed in SQLDF. Caution: the function calculating standard deviation is called di� erently.

Di­ erences

Easy column renaming in R

Missing grouping

Integer division leads to integer value in R

+

countries cities

proc sql;
select fruit, number, years
from randomdf
where number < 5
order by fruit, years desc;

quit;

sqldf(“select fruit, number, years
 from randomdf
 where number < 5
 order by fruit, years desc”)

randomdf

Similarities

proc sql;
select fruit
from randomdf
where fruit like ‘B%’ or fruit like ‘%le’;

quit;

sqldf(“select fruit
 from randomdf
 where fruit like ‘B%’ or fruit like ‘%le’”)

proc sql;
select group1, group2,

 max(value) as max_value
from exampledata
group by group1;

quit;

sqldf(“select group1, group2,
 max(value) as max_value
 from exampledata
 group by group1”)

exampledata

proc sql;
select fruit, avg(years), min(years), max(years),

count(fruit), std(years), sum(years)
from randomdf
group by fruit;

quit;

sqldf(“select fruit, avg(years), min(years), max(years),
count(fruit), stdev(years), sum(years)

 from randomdf
 group by fruit”)

proc sql;
create table new_df as
select column_a a
from df;

quit;

new_df <- sqldf(“select column_a as a
 from df”)

proc sql;
create table new_df as
select column_a as a
from df;

quit;

new_df <- sqldf(“select column_a a
 from df”)

Only changes
column label but
not column name

Leads to error

Column name
changes

Can be solved by

options nolabel;

int_table

proc sql;
 create table integer_division as

select a/b as quotient from int_table;
quit;

integer_division <- sqldf(“select a/b as quotient
from int_table”)

integer_division <- sqldf(“select (a+0.0)/b as
quotient from int_table”)

Need to � pecast integer to fl oat to perform a real division

proc sql;
select country_name, city_name
from city_country
where zip is not null and country_name is not null;

quit;

sqldf(“select country_name, city_name
 from city_country
 where zip is not null and

country_name is not null”)

proc sql;
select a.ID, a.country_name, b.city_name, b.zip
from countries as a
inner join cities as b

 on a.ID = b.country_id;
quit;

sqldf(“select a.ID, a.country_name, b.city_name,b.zip
 from countries as a
 inner join cities as b
 on a.ID = b.country_id”)

proc sql;
select a.ID, a.country_name, b.city_name, b.zip
from countries as a
full join cities as b

 on a.ID = b.country_id;
quit;

sqldf(“select a.ID, a.country_name, b.city_name, b.zip
 from countries as a
 full join cities as b
 on a.ID = b.country_id”)

PROC SQL SQLDF

If not all variables from the „select“ statement are added to the „group by“ statement, SQLDF only displays the
observations containing the value, calculated by the aggregate function, while PROC SQL displays all observations.

group2 missing

Reproduce
R-Code

Conclusion
• Learning SQLDF with previous knowledge of PROC SQL is not a big e­ ort
• There are some di­ erences to be considered
• Be aware of which database management system SQLDF is using in the backend

