Paper PP19

A way out of the PROC COMPARE labyrinth

Judith Kanz, mainanalytics GmbH, Sulzbach, Germany

ABSTRACT

Outputs for the various analyses need to be programmed while the trial is ongoing. But validation cannot wait until
final data is available either. Double programming of the input dataset for the reporting procedure usually is the
method of choice as validation can easily be repeated on updated data by executing the available validation
programs.

This poster shows not only how to facilitate programmatic comparison but also how to digest all information provided
by the PROC COMPARE procedure step by step.

INTRODUCTION

Since | started in the pharmaceutical industry 30 years ago, the significance of validation has seen a remarkable
increase. This heightened awareness has led to validation being given a very high priority in the creation process of
analysis datasets and outputs. The time between the availability of final data and delivery of final outputs is usually
rather short, the validation cannot wait for any database lock and should start at an early state. Moreover, draft
outputs will probably be requested by statisticians or medical writers a long time before final delivery. The tables,
listings and graphs delivered at this timepoint should already be in a good shape.

As the validation process is repeated very often, with limited time for the final check, it is recommended to do this by
double programming. The programmatic comparison of output files is difficult and even impossible for graphs,
besides that it would take an enormous effort to match the table layout completely. A practical way is the double
programming of the input dataset used in the reporting procedure. In general, the comparison is performed with
PROC COMPARE. The output of this procedure can be overwhelming and often it is not easy to find the source of
the discrepancies and figure out what is essential for the underlying output.

This poster shall show my daily work validation approach, how to go through a PROC COMPARE example step by
step and how the process can be supported by a macro.

EXAMPLE OUTPUT
Example outputs of the PROC COMPARE will be shown for the validation of an adverse event frequency table. The

Xanomeline

Figure 1: Example table

The dataset that was used for PROC REPORT is saved as a permanent file called PRODDS in this paper. To enable
as many automatic checks as possible the labels and formats used for the procedure shall be already assigned to the
variables in this dataset rather than defining them in the PROC REPORT define statement.

The table above was created with the following PROC REPORT:

proc report data=dstlf.&outid nowd headline headskip missing split="$" spacing=2;
column subgroupn subgroup order aesoc aedecod text treat,
(freq perc ci trisk rate) dummy;
define subgroupn / group id order=data noprint;
define subgroup / group id order=data noprint;
define order / group id order=data noprint;
define aesoc / group id order=data noprint;
define aedecod / group id order=data noprint;
define text / group id order=data width=55 flow spacing=0;
define treat / " " order=data across;
define freq / display;
define perc / display;
define trisk / display;
define rate / display;
define dummy / noprint;
break after aesoc / skip;
compute before page ;
line @1 subgroup $50.;
endcomp;
run;

Figure 2: PROC REPORT statement to produce example table

VALIDATION STEPS

e Before starting with the validation process make sure that the output is created with the latest program version
and on the most current data.

e Check if the log file of the main program is clear as it is not reasonable to compare datasets which may not be
created properly.

e An output review shall be done in the beginning to make sure that the required information is available and
displayed correctly.

¢ In addition, a source code review of the reporting procedure is necessary as this step is beyond the part that can
be handled by double programming.

e Once all the above steps were successfully performed create a dataset matching the input dataset of the
reporting procedure. This validation dataset is called QCDS.

CONSIDERATIONS

For output validation generally it is not necessary to create a completely matching QCDS. It is sufficient to focus on

what is really needed for the respective output:

e Which variables included in PRODDS are used to produce the output? This can either be variables where the
values are displayed, or variables used for sorting. Often the dataset also contains variables used in the
derivation process but not needed in the end.

e Are variable labels or formats used directly for the output?

How many digits are shown in the output? Does it make sense to restrict the comparison that way?

e Are indentations or other spaces relevant for PROC COMPARE or would it be sufficient to check this per output
review taking indentations or spaces into account

e Furthermore, it should be checked if there are any identifying variables in PRODDS which can be used as ID
variables in the PROC COMPARE procedure. This helps to find the location of discrepancies.

SUPPORTING MACRO

For the comparison between PRODDS and QCDS a macro will be used to perform the PROC COMPARE directly in
the validation program, taking the considerations mentioned above into account.

The macro is defined with the following macro parameters:

Macro QC_COMPARE

Parameter Default Description

OUTID Output ID for TLF comparison

PRODDS ADS name for ADS comparison

QCDS out Name of QC dataset

KEY _hone_ Variable names for PROC COMPARE ID (also possible: _none)

KEEP _all_ Variable names taken into account for PROC COMPARE (also possible: _all_)

DROP _none_ Variable names removed for PROC COMPARE (also possible: _none)

INDENT _none_ Variable names for comparison of indentations (also possible: _all_/ none_)

COMPRESS _none_ Variable names to be compressed before PROC COMPARE (also possible:
all/_none_)

CRITERION 0.000001 Value of CRITERION option used for PROC COMPARE

LABELS _all_ Variable names for comparison of labels (also possible: _all_/ none_)

FORMATS _all_ Variable names for comparison of formats (also possible: _all_/_none_)

MODIFY Dataset statements for PRODDS modifications

The macro creates temporary datasets from PRODDS and QCDS with the required modifications. Both datasets
contain only variables as specified with the parameters KEEP and DROP and only relevant labels and formats are
kept. If the check for indentations or blanks shall not be performed, or further changes are required, the respective
variables are modified accordingly. Both datasets are sorted according to the variable list specified with macro
parameter KEY. The PROC COMPARE is conducted with the option LISTALL, the option CRITERION with the value
as specified in parameter CRITERION and with the key variables in the ID statement, if applicable.

It is recommended to set up the environment in a way that the output file name and the PRODDS name can
automatically be retrieved from the output ID. This can be for example handled by a dataset containing the meta
information of all outputs including the IDs and the output file names, and so the macro can also check if the output
file is available. As a timestamp check of the output file is no guarantee that the output is created by the last run, this
check is not implemented. The best way to avoid outdated files being kept is to remove all existing output files before
running the main programs.

In addition to the PROC COMPARE performance the macro creates two temporary datasets to support the search for
the sources of discrepancies.

Temporary dataset 1: MCCOMP_CHECKKEY to check for discrepancies in ID variables

This dataset supports the check of non-matching IDs. It contains all ID variables plus two additional flag variables
PROD and QC to identify from which dataset the record is coming from. This dataset can be helpful to find a pattern
in the discrepancies. The dataset contains all original records from both datasets. It might be useful to see all values
together or restrict the focus to specific entries only to find a pattern in the discrepancies.

This dataset can for example be used for discrepancies in very large lab outputs as it is easier to see here if a
parameter is dropped completely or for some visits only than in the PROC COMPARE output itself.

Temporary dataset 2: MCCOMP_CHECKVARS to check for discrepancies in non-ID variables

Again, all records are included. This dataset contains all ID variables first, and afterwards all non-ID variables from
PRODDS and QCDS side by side with prefixes PROD_ and QC_. Moreover, the flag variables PROD and QC are
added, and in addition the variable DIFF_PROD_QC is created. This variable flags records with any discrepancy and
is created with respect to the value in macro parameter CRITERION, so only the number of relevant digits is taken
into account.

This dataset could for example be helpful for PROC COMPAREs with more ID variables than printed in the PROC
COMPARE output. Furthermore, it might help to find a pattern in discrepancies if only specific entries are affected.

All issues found by the macro are also printed in the log file with the keywords ERROR or WARNING as shown in the
screenshot below. If a re-run is done due to new data being available it is not necessary to check all PROC
COMPARE outputs manually again, but search for these keywords in the log files, which is something that should be
done anyway. All messages contain either the output or the dataset name, which makes it possible to identify the
problematic output in case a program produces multiple outputs.

variable
variable . in = only

variable PERC with conflicting t

variable CI with diffe
> FREQ with

variable PERC with

variable RATE with dif
> TREAT wi

02 AEFREQ

WARNING: QC of DSTLF.T_00Z_ AEFREQ

Figure 3: Log file messages

Here the usage of the macro for an output validation is presented only. The validation of analysis datasets (ADS) is
more straight forward than for outputs, as the QC approach is to create a complete duplicate version of the dataset.
In this case the macro can be supportive as well, but with different rules. It is not possible to restrict the variables by
using parameters KEEP and DROP as the variables must match completely. Accordingly, suppressing the label or
format check as well as data modifications with parameters INDENT, COMPRESS or MODIFY are disabled. A key
must be provided. For ADS comparisons two additional checks are conducted. The macro checks if the ADS is sorted
according to the key variables, and if the order of the variables in the datasets is matching. It is assumed that the
QCDS is created according to the dataset specifications and the comparison shall be done with the key variables
provided there.

PROC COMPARE OUTPUTS
This section will show some examples of PROC COMPARE outputs and explain how to handle these with the help of
the macro.

EXAMPLE 1
Listing of Variables in WCRK.MCCOMP PRODDS but not in WORK.MCCOMP QCDS
Variakle Type Length
CRDER Num g
DUMMY Num 8

Figure 4: PROC COMPARE output example 1 - listing of variables not in both datasets

The first part of the PROC COMPARE output shows variables that are only included in one of the datasets. The use
of these variables in the output procedure should be checked via source code review to decide if they need to be
compared or not. In this case both variables are included in the PROC REPORT statement, but not printed directly.
Variable ORDER controls the order of the rows in the output, so it is recommended to include it in the comparison.
Variable DUMMY is often added in PROC REPORT when ACROSS is used to control the layout of the output. As this
variable is not printed it might be skipped for the comparison.

The list of variables used for PROC COMPARE can be controlled by the macro parameters KEEP and DROP.

EXAMPLE 2
Listing of Common Variables with Conflicting Types
Variable Dataset Type Length Format Labe
PERC WCRE.MCCCMP_PRCODDS Num 3.1 %

onooon

WORE .MCCCME QCDS Char

Figure 5: PROC COMPARE output example 2 - listing of common variables with conflicting types

The second part of the PROC COMPARE output shows variables with conflicting types, so the same variable is
numeric in one dataset and character in the other. This means the values of these variables cannot be compared.
Usually, it makes sense to update the validation program.

EXAMPLE 3

Listing of Common Variakles with Differing Attributes

Variable Dataset Type Length Format Label

SUBGROUP WORE.MCCCOMP PRODDS Char 45
WORE .MCCOMP QCDS Char =11

TREAT WORK.MCCOMP_PRODDS Char 100 Treatment
WORE .MCCOMEPE QCDS Char 100

TRISE WORK.MCCOMP PRODDS Num B 8.1 Time at risk [patient years]
WCORE .MCCOMP_ QCDS Mum g the sum, RISEYELRS

CI WORE.MCCOMP PRODDS Char 15 95% CI
WORK .MCCOMP_QCDS Char 15

FREQ WORK.MCCOMP_PRODDS Num g 3 N
WORE.MCCOMP_QCDS Num g

RATE WORK.MCCOMP_PRCDDS Num g8 5.1 Incidence rate/100 patient years
WoORE.MCCOMP QCDS MNum B

TEXT WORE.MCCOMP PRCDDS Char 200 System organ class/$
WORE.MCCCOMP QCDS Char 230 System organ class/$

Figure 6: PROC COMPARE output example 3 - listing of common variables with differing attributes

The third part of the output lists variables with differences in the attributes label, format, informat and length.

It is important to compare labels within the PROC COMPARE if they are directly used by the output procedure,
otherwise this comparison might be skipped. This can be controlled by the macro parameter LABELS.

In case a variable is attributed with a permanent format that is used in the procedure it should also be included in the
comparison. This is handled by macro parameter FORMATS. If a relevant temporary format is assigned, the
definition of the format has to be checked per source code review. In addition, it would be good to have a decode
variable in PRODDS to allow automated checks, even if it is not used for output creation.

Informats are not relevant for the output procedure and are dropped completely from the comparison.

The macro does not provide the possibility to suppress discrepancies in length statements. For some variables it
makes sense to have a greater length in QCDS to ensure that values are not truncated. A workaround to get rid of
this message is to create a longer variable in the QC program first and check if the length of the variable is sufficient.
If this is not the case create a warning message in the log file. Afterwards create a variable with the name and length
as used in PRODDS.

EXAMPLE 4

Comparison Results for Cbservations

Observation 25 in WORK.MCCOMP QCDS not found in WORK.MCCOMP PRODDS:
PN=11 TEXT= APPLICATION SITE DESQUAMATICN TREAT= Placebo .

n
=}
m
[}
o
(8]
&

Observation 26 in WORK.MCCOMP_OCDS not found in WORK.MCCCMP_PRODDS:
BGROUPN=11 TEXT= ZAPPLICATION SITE DESQUAMATICN TREAT=_XatQmEliRE_.

m
(=]

Observation 37 in WORK.MCCOMP_0QCDS not found in WORK.MCCCMP_PRODDS:
PN=11 TEXT= ZAPPLICATION SITE PERSPIRATICN TREAT=_Flacebﬂ_.

n
=
w1}
G2
os]
[e]
&

Observation 38 in WORK.MCCOMP_QCDS not found in WORK.MCCCMP PRODDS:
PN=11 TEXT= ZAPPLICATION SITE PERSPIRATICN TREAT=_Xatamalite_.

0]
o
m
N
G
9]
c

Observation 47 in WORK .MCCOMP_PRODDS not found in WORK .MCCCMP_QCDS:
PN=11 TEXT= APPLICATION SITES DESQUAMATICN TREAT=_?laCEbD_.

Alsaseastsam AQ 2, WIADT MOCAMD DDATING mads Ffammad 2. WADE MOCOMD ACTQ.

Figure 7: PROC COMPARE output example 4 - comparison results for observations

The next output part is about observations with non-matching ID variables. They are shown if the PROC COMPARE
option LISTALL is specified, but as they are printed in order of appearance the records from PRODDS and QCDS are
mixed. Therefore, it can be difficult to find a pattern, especially in very large outputs or for a lot of ID variables or if
there are multiple reasons leading to mismatches.

To facilitate the check of non-matching IDs the first temporary dataset MCCOMP_CHECKKEY can be used.:

B WORK.MCCOMP_CHECKKEY

View: | Columnnames ~ | 83 B ¢y B =22 Y Filter: prod ne gc @

Columns ® Total rows: 510 Total columns: 5 Filtered rows: 180 M= 4= Rows1-180
Seloct all SUBGROUPN TREAT TEXT PROD QcC
@® SUBGROUPN 11 _Placebo_ AFPLICATION SITE DESQUAMATION 1
& TREAT . 11 _Xanomeline_ APPLICATION SITE DESQUAMATION 1
A TEXT 3 11 _Placebo_ APPLICATION SITE PERSPIRATION 1
) 4 11 Xanomeline_ APPLICATION SITE PERSPIRATION 1
B ® PROD
) 5 11 _Placebo_ APPLICATION SITE$ DESQUAMATION 1
® ac
6 11 Xanomeline_ APPLICATION SITE$ DESQUAMATION 1
7 11 _Placebo_ APPLICATION SITES PERSPIRATION 1
8 11 Xanomeline APPLICATION SITE$ PERSPIRATION 1
9 11 _Placebo_ ATRIOVENTRICULAR BLOCK SECOND$ DEGREE 1
Property Value 10 11 _Xanomeline_ ATRIOVENTRICULAR BLOCK SECONDS DEGREE 1
Labe I 1M 11 _Placebo_ ATRIOVENTRICULAR BLOCK$ SECOND DEGREE 1

Figure 8: temporary dataset MCCOMP_CHECKKEY to show differences in ID variables

The dataset was filtered for entries with discrepancies, this means records that are either included in PRODDS or in
QCDS only were selected. It shows that the split characters and additional blanks to force the indentation of the
following line in the table are not done at the same place. As the datasets provides the chance to see the respective
entries one below the other it is easier to find the correct algorithm done on the production side.

In case it turns out that the search for the root cause is very time consuming another solution to handle this
discrepancy can be chosen. The macro provides also the possibility to modify entries in PRODDS using the macro
parameter MODIFY. With this option it is possible to remove split characters and check the correct appearance per
output review.

EXAMPLE 5

Value Comparison Results for Variakles

Base Valus Compare Valus

Il
SUBGROUPN TEXT TREAT |l SUBGROUP SUBGROUP

Il + +
I

36 ABDOMINAL DISCCOMFC _Xanomeline 11 Race: Ameri Subgroup Race:

36 ABDOMINAL PAIN _Xanomeline |l Race: Amerli Subgroup Race: Rm

36 ACROCHORDON EXCISI _Xanomeline 11 Race: Ameri Subgroup Race:

36 ACTINIC EERARTOSIS _Xar.f:malir.e_ || Race: Ameri Subgroup Race:

36 AGITATICN _Xar.-:melir.e_ | Race: Ameri Subgroup Race: AEm
1

A AT.COROT. TIaF ¥anmrmalina Suhrrain Race: Lmari Sk rann Race s

Figure 9: PROC COMPARE output example 5 - value comparison results for variable SUBGROUP

The last part of the output covers discrepancies in non-ID variables. If mismatches occur after the twentieth
character, they are not visible in the PROC COMPARE output itself. In this case the second temporary dataset
MCCOMP_CHECKVARS can be used. Both variables can be seen side by side, containing the complete contents.

B WORK.MCCOMP_CHECKVARS X

View: | Columnnames ~ & B 3 B 2 ? Filter: prod=1and ge=1 and prod_subgroup ne qc_subgroup €@
Columns ® | Total rows: 3915 Total columns: 32 TFiltered rows: 249 = 4= Rows 1-2
8 Selectall PROD_SUBGROUP QC_SUBGROUP
0 @ SUBGROUPN 1 Subgroup Race: American Indian or Alaska Nati Subgroup Race: American Indian or Alaska Native
O & TEXT 2 Subgroup Race: American Indian or Alaska Nati Subgroup Race: American Indian or Alaska Native
O A TREAT 3 Subgroup Race: American Indian or Alaska Nati Subgroup Race: American Indian or Alaska Native
& PROD_SUBGROUP 4 Subgroup Race: American Indian or Alaska Nati Subgroup Race: American Indian or Alaska Native
ubgroup Race: American Indian or Alaska Nati Subgroup Race: American Indian or Alaska Native
G 4 0c sUBGOUr Subgroup Race: American Indi Alaska Nati Subgroup Race: American Indian or Alaska N
v 2)
& Subgroup Race: American Indian or Alaska Nati Subgroup Race: American Indian or Alaska Native
O PROD_TREATN
® 7 Subgroup Race: American Indian or Alaska Nati Subgroup Race: American Indian or Alaska Native
M @ QC TREATN

Figure 10: temporary dataset MCCOMP_CHECKVARS to show differences in variable SUBGROUP

EXAMPLE 6

Value Comparison Results for Variables

|l 95% cI
|| Base Value Compare Value
SUBGROUPN TEXT TREAT [cI

Il

I
11 ABDOMINAL DISCOMFO _Placebo_ Il [0.0, 10.4] [0.0, 10.4)
11 ABDOMINAL DISCOMFO _Xanomeline Il [0.2, €.9] [0.2, 6.9]
11 ABDOMINAL PAIN _Placebo_ Il [0.0, 10.4] [0.0, 10.4)
11 ABDOMINAL PAIN _Xanomeline_ I [0.2, 86.9] [0.2, 6.9]
11 ACROCHORDCN EXCISI _Placebo_ Il [0.0, 10.4] [0.0, 10.4)
11 ACROCHORDON EXCISI _Xanomeline_ 11 [0.0, 4.7] [0.0, 4.7]
11 ACTINIC KERATCSIS _Placebo_ | | [0.0, 10.4] [0.0, 10.4]
11 ACTINIC KERATCSIS _X¥anomeline 11 [0.2, €.9] [0.2, 6.9]
11 AGITATION _Placebo_ Il [0.0, 10.4] [0.0, 10.4)
11 NATMAMT AR Vammmmal A [r n N 4 71 r (ol s a 7

Figure 11: PROC COMPARE output example 6 - value comparison results for variable CI

The above example is about discrepancies in confidence intervals. It appears the discrepancies are simply additional
blanks within the interval in the QC variable. Therefore, it is a reasonable option to remove these spaces from the
compare and only check them during the output review. If the check concentrates on the values only by using the
macro parameter COMPRESS it is possible to even use a bigger format on the values in QCDS and so it can be
checked if the format used in PRODDS is sufficient.

EXAMPLE 7

211 Variables Compared have Unegqual Values

Variabkle Type Len Label
TRISK NUM 8
ELTE NUM 8

Times at risk [patient yesars]
Incidence rate/100 patient years

Compare L

the sum,

Figure 12: PROC COMPARE output example 7 - listing of variables with unequal values

This example shows discrepancies in variables for time at risk and for the incidence rate. In this case it makes sense

abel

RISEYERRS

Ndif

39
39

MaxDif

oy
(%)

o

=]
=
=1

to first check for dependencies between variables. As time at risk is used to calculate the incidence rate it is
reasonable to focus on the mismatches in time at risk first. It might be that the discrepancies for the incidence rate
disappear automatically once time at risk matches, but for sure there is no chance to get a match if the underlying

variables differ.

Value Compariscon

Results for Variables

Time at risk [patient years]

the sum, RISEYEZARS

|
11
|1 Ease Compare
SUBGROUPN TEXT TREAT || TRISK TRISK Diff % Diff
11
11
11 COUGH _Xanomeline_ | | 19.2 159.2498 0.008214 0.0427
11 ERYTHEMA _Xanomeline_ |1 16.1 16.1205 0.008214 0.0510
11 NASAL CONGESTION _Xanomeline_ I 19.3 19.3155 0.008214 0.0425
11 NAZUSER _Xanomeline_ || 19.9 15.59042 0.008214 0.0413
11 PAROSMIA _Katgmeline_ || 20.2 20.1725 0.008214 0.0407
11 PRURITUS _Xanomeline || 5185 5.4935 0.008214 0.0330
11 SALIVARY HYPERSECR _Xanomeline_ | | 19.7 15.6660 0.008214 0.0418
11 VOMITING _Xanomeline || 18.9 8.9131 0.008214 0.0434
11 Gastrointestinal dis _Xanomeline_ || 16.4 16.3888 0.008214 0.0501
11 Nervous system disor _Xanomeline |1 16.1 16.0903 0.008214 0.0511
11 Number of patients w _Xanomeline_ | 4.6 4.5640 0.008214 0.1803
11 Respiratorv. thoraci Xanomeline 11 18.1 18.1410 0.008214 0.0453

Figure 13:

PROC COMPARE output example 7 - value comparison results for variable TRISK

On first sight the source of the difference cannot be detected, and it is necessary to have a closer look at the data. To

find a starting point for the search for the root cause the second temporary dataset MCCOMP_CHECKVARS can be

used.

A WORK.IMCCOMP CHECKVARS X

TREAT

Xanomeline

Xanomeline

Xanomeline

Xanomeline

Xanomeline

Xanomeline

SALIVARY HYPERSECRETION _Xanomeline

~Xanomeline

_Xanomeline

Xanomeline

Xanomeline

Xanomeline

Xanomeline

Xanomeline

View: Columnnames ~ B3 B 3 B 22 Y Filter: diff_prod qc=
Columns ® Total rows: 3825 Total calumns: 32 Filtered rows: 24
8 selecall SUBGROUPN TEXT
® SUBGROUPN 1 11 COUGH
& TEXT 2 11 ERYTHEMA
& TREAT 3 1 NASAL CONGESTION
4 11 NAUSEA
] & FPROD_SUBGROUP
11 PAROSMIA
O & OC_SUBGRQUP
6 11 PRURITUS
(] @ PROD_TREATN
7 11
O QC_TREATN
® 8 11 VOMITING
PROD_AESOC
may - 9 21 COUGH
0 & OCARSOC 10 21 ERYTHEMA
(] 4 PROD AEDECOD | 4y 21 NASAL CONGESTION
O A QC_AEDECOD 12 21 NAUSEA
@ PROD_COUNT 13 21 PAROSMIA
O @ DC_COUNT 14 21 PRURITUS

1 and substr(text,1,1)="" @

=
PROD_COQUNT

&

g}

&= Rows1-24 =
DIFF_PROD_QC

1

Figure 14: temporary dataset MCCOMP_CHECKVARS prepared to find the source of differences in variable TRISK

Records with discrepancies were selected, and in addition entries for preferred terms were kept. As the dataset
contains all variables, the variable containing the number of patients with event can be checked. Some events with
one occurrence only are included in the selection. So one of these events can be picked and the corresponding event
can easily be selected from the underlying ADaM dataset. A manual check of the results can be performed.

EXAMPLE CALL
During the validation process the macro call for comparison is adapted several times according to the current results.
For the example above, in the end the call could look like this:

%$gc_compare (outid =t 002 aefreq
, key = subgroupn text treat
,drop = dummy
,compress = ci
,labels = text freq perc ci trisk rate treat
, formats = text freq perc ci trisk rate treat
,modify = %str(text=tranwrd (text,"$ ",
) i

Figure 15: Example call of macro QC_COMPARE

FURTHER INVESTIGATIONS

If there are still discrepancies left the common approach to identify the source needs to be followed. One possibility is
to perform a source code review. In case the program contains a lot of macros a log file review can be done using
options MPRINT, MLOGIC or SYMBOLGEN. Another option is to run the main program interactively and check
temporary datasets. Alternatively, to avoid looking into the production program the programmer can be asked to
provide a dataset with the respective calculations on patient level that are done in the main program and compare
this one against the corresponding dataset on QC level.

CONCLUSION
You can ease your daily work. The macro cannot provide a solution to get rid of all discrepancies, but it can help you
to get closer to finding a pattern or a hint for the source of mismatches and can speed things up.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:
Author Name: Judith Kanz

Company: mainanalytics GmbH

Address: Otto-Volger-Strasse 3c, 65843 Sulzbach/Taunus, Germany

Work Phone: +49 (6196) 766 84 28

Email: Judith.kanz@mainanalytics.de

Website: www.mainanalytics.de

Brand and product names are trademarks of their respective companies.

